skip to main content


Search for: All records

Creators/Authors contains: "Averitt, Richard D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The emergence of magnetism in quantum materials creates a platform to realize spin-based applications in spintronics, magnetic memory, and quantum information science. A key to unlocking new functionalities in these materials is the discovery of tunable coupling between spins and other microscopic degrees of freedom. We present evidence for interlayer magnetophononic coupling in the layered magnetic topological insulator MnBi 2 Te 4 . Employing magneto-Raman spectroscopy, we observe anomalies in phonon scattering intensities across magnetic field-driven phase transitions, despite the absence of discernible static structural changes. This behavior is a consequence of a magnetophononic wave-mixing process that allows for the excitation of zone-boundary phonons that are otherwise ‘forbidden’ by momentum conservation. Our microscopic model based on density functional theory calculations reveals that this phenomenon can be attributed to phonons modulating the interlayer exchange coupling. Moreover, signatures of magnetophononic coupling are also observed in the time domain through the ultrafast excitation and detection of coherent phonons across magnetic transitions. In light of the intimate connection between magnetism and topology in MnBi 2 Te 4 , the magnetophononic coupling represents an important step towards coherent on-demand manipulation of magnetic topological phases. 
    more » « less
  2. During the past decade, metasurfaces have shown great potential to complement standard optics, providing novel pathways to control the phase, amplitude, and polarization of electromagnetic waves utilizing arrays of subwavelength resonators. We present dynamic surface wave (SW) switching at terahertz frequencies utilizing a mechanically reconfigurable metasurface. Our metasurface is based on a microelectromechanical system (MEMS) consisting of an array of micro-cantilever structures, enabling dynamic tuning between a plane wave (PW) and a SW for normal incidence terahertz radiation. This is realized using line-by-line voltage control of the cantilever displacements to achieve full-span (2π<#comment/>) phase control. Full-wave electromagnetic simulations and terahertz time-domain spectroscopy agree with coupled mode theory, which was employed to design the metasurface device. A conversion efficiency of nearly 60% has been achieved upon switching between the PW and SW configurations. Moreover, a nearly 100 GHz working bandwidth is demonstrated. The MEMS-based control modality we demonstrate can be used for numerous applications, including but not limited to terahertz multifunctional metasurface devices for spatial light modulation, dynamic beam steering, focusing, and beam combining, which are crucial for future “beyond 5G” communication systems.

     
    more » « less
  3. Abstract

    Bound states in the continuum (BIC) is an exotic concept describing systems without radiative loss. BICs are widely investigated in optics due to numerous potential applications including lasing, sensing, and filtering, among others. This study introduces a structurally tunable BIC terahertz metamaterial fabricated using micromachining and experimentally characterized using terahertz time domain spectroscopy. Control of the bending angle of the metamaterial by thermal actuation modifies the capacitance enabling tuning from a quasi‐BIC state with a quality factor of 26 to the BIC state. The dynamic response from the quasi‐BIC state to the BIC state is achieved by blueshifting the resonant frequency of the LC mode while maintaining a constant resonant frequency for the dipole mode. Additional insight into the tunable electromagnetic response is obtained using temporal coupled mode theory (CMT). The results reveal the effectiveness of bi‐layer cantilever‐based structures to realize tunable BIC metamaterials with potential applications for nonlinear optics and light‐matter control at terahertz frequencies.

     
    more » « less
  4. null (Ed.)
  5. Abstract

    Strongly driven antiferromagnetic Mott insulators have the potential to exhibit exotic transient phenomena that are forbidden in thermal equilibrium. However, such far-from-equilibrium regimes, where conventional time-dependent Ginzburg-Landau descriptions fail, are experimentally challenging to prepare and to probe especially in solid state systems. Here we use a combination of time-resolved second harmonic optical polarimetry and coherent magnon spectroscopy to interrogaten-type photo-doping induced ultrafast magnetic order parameter dynamics in the antiferromagnetic Mott insulator Sr2IrO4. We find signatures of an unusual far-from-equilibrium critical regime in which the divergences of the magnetic correlation length and relaxation time are decoupled. This violation of conventional thermal critical behavior arises from the interplay of photo-doping and non-thermal magnon population induced demagnetization effects. Our findings, embodied in a non-equilibrium phase diagram, provide a blueprint for engineering the out-of-equilibrium properties of quantum matter, with potential applications to terahertz spintronics technologies.

     
    more » « less
  6. The concept of “bound states in the continuum” (BIC) describes an idealized physical system exhibiting zero radiative loss composed, for example, of an infinitely extended array of resonators. In principle, vanishing of radiative losses enables an infinitely high-quality factor and corresponding infinite lifetime of the resonance. As such, BIC inspired metasurfaces and photonic designs aim to achieve superior performance in various applications including sensing and lasing. We describe an analytical model based on temporal coupled mode theory to realize an “accidental” (i.e., parameter-tuned) Friedrich–Wintgen BIC. Further, we experimentally verify this model with measurements of quasi-BICs in a metallic terahertz metasurface (MS) and the corresponding complementary metasurface (CMS) using terahertz time domain spectroscopy. For the MS and CMS structures, quality factors of∼<#comment/>20are achieved, limited by non-radiative intrinsic loss in the materials. Our results reveal that Babinet’s principle qualitatively holds for the MS and CMS quasi-BIC structures. In addition, ultra-high electric and magnetic field enhancement MS and CMS structures, respectively, are presented.

     
    more » « less